DiSTAR

Didattica

Info utili

Career Day 2019

Presentazione del Dipartimento

Il Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse (DiSTAR) dell'Università di Napoli Federico II, nella sua evoluzione a partire dall’istituzione prima del Real Museo Mineralogico e poi dell’Osservatorio Vesuviano, rispettivamente nel 1801 e nel 1841, rappresenta uno dei più antichi istituti di ricerca italiani nel campo delle Scienze Geologiche. (continua...)
 
Il DiSTAR completerà nel corso del 2018 il suo trasferimento, nell’ambito dell'Università di Napoli Federico II, dal nucleo originario del Centro Storico di Napoli alla sua nuova sede, ubicata all’interno del Complesso di Monte Sant’Angelo, nella zona di Fuorigrotta-Soccavo.

La Carta Geologica: Una finestra sul sottosuolo

Test di Ammissione

 Università degli Studi di Napoli Federico II

Scuola Politecnica e delle Scienze di Base

 

Il Presidente

 
 
Napoli, XX marzo 2019
 
Cara studentessa, Caro studente,
sei interessato ad iscriverti al Corso di Laurea in Scienze Geologiche dell’Università di Napoli Federico II? L’iscrizione al Corso di Laurea in Scienze Geologiche prevede lo svolgimento obbligatorio di un Test di ammissione basato su un questionario a risposta multipla, su argomenti di Matematica, Scienze, Logica e comprensione Verbale. Il Test di ammissione, erogato in modalità on-line (TOLC), può essere sostenuto in più sessioni programmate nel periodo marzo-novembre 2019.
Per tutte le modalità di erogazione clicca qui

Contest PLS GEOLOGIA – UNINA


 
1. Modeling permeability of carbonate reservoirs
Carbonate pore structure and therefore permeability is controlled in large part by unique diagenetic events and products, and a complex wettability structure that is often dominantly weakly-oil wet. This produces a highly diverse array of pore types and size, styles of connectivity and tortuosity, and in turn flow behaviours. While changes in porosity can be directly related to diagenetic petrographic characteristics such as cement distribution and dissolution features, quantifying how these textures control attendant changes in permeability ismore challenging. The impact of individual diagenetic events and their products on flow properties can, however, be isolated and modelled using 3D pore architecture models.
 
Porosity and permeability evolution through many diagenetic scenarios often display several ‘diagenetic tipping points’ where the decrease in permeability is dramatically larger than expected for the associated decrease in porosity. The effects of diagenesis also alters the capillary entry pressures and relative permeabilities, so providing trends that can be applied to real rocks. In turn, such diagenetic pathway models can be used to provide constraints on predicted flow behaviour during burial and/or uplift scenarios using ‘diagenetic back stripping’ of carbonate rocks. In dominantly microporous carbonates, average pore radius controls single-phase permeability, but has minimal effect on multiphase flow. When moldic mesopores are added to a microporous matrix, they only impact flow when directly connected: micropores control the magnitude of single-phase permeability. Recovery, however, is dependent on both wetting scenario and pore network homogeneity: under water-wet imbibition, increasing proportions of microporosity yield lower residual oil saturations.
 
Process-based models of early cementation (isopachous and syntaxial) show that isopachous cement is effective in closing pore throats and limiting permeability, but permeability changes due to syntaxial cement growth (preferentially on monocrystalline grains) is highly dependent on monocrystalline grain location and direction ofthe grain crystal axis, as this can create a highly ‘patchy’ distribution of cement.
 
2. The Great Dying: what happened 252 million years ago