Info utili

Follow us on twitter

Research Topics in

 

THE FLUIDS AND GEOCHEMICAL EVOLUTION OF MAGMATIC SYSTEMS

 

The structured researchers pertaining to this research are: Annamaria Lima (coordinatrice), Benedetto De Vivo, Claudia Cannatelli, Stefano Albanese
Non-structured researchers:  Dr Rosario Esposito, Angela Doherthy, Rita Keblez, Daniele Redi;
Doctoral students: Denis Zamboni
 
The group involved in this theme of research applies, in particular, methodology related to the study of fluid and silicate melt inclusions, to determine the evolution of the fluids in petrogenic, magmatic, volcanic and hydrothermal environments.  Through the analysis of fluid and melt inclusions, it is possible to track the evolution of magma from the source, through ascent, to the surface.  Knowledge of the chemical composition of fluid and melt inclusions, including their volatile contents, is of fundamental importance to the understanding of the magma dynamics, the mechanisms of explosive eruptions, and the residence times of crystals in the magma chamber, and therefore provides important information for the mitigation of volcanic risk.
 
inclusioni 1
hat are fluid inclusions (FI)?
- They are cavities with dimensions of a few micrometers which contain fluid(s) ± solids, trapped within minerals;
- They are formed following the mechanisms of growth, precipitation and/or dissolution of minerals ;
- They are the only direct evidence of fluids that, in the more or less recent geological past, have been in contact and reacted with the rocks.
 
What are the fields of application for FI?
After the pioneering work of Sorby (1858), the study of fluid inclusions saw remarkable development in the second half of the last century with regards to the information obtainable with the perspective: “Geology is a science whose objective is to reconstruct events”. In particular:
- They contribute to the understanding of the diagenetic system;
- To the understanding of the evolution of sub-surface fluids;
- To the study of the formation of mineral deposits;
- To the study of petroleum migration;
-To the reconstruction of the thermal, tectonic and stratigraphic evolution of the sub-volcanic system;
In particular, the importance of FI as a tool for exploration is highlighted by the study of the depositional environments of the mineralization as it provides information on the parameters of temperature, pressure, density and chemical composition of the mineralizing fluids.  This allows us to understand how a certain type of mineral deposit is formed and where we can search for new deposits.
 
What are magmatic/melt inclusions (MI)?
MI differ from FI in that the cavities in the mineral are filled with magmatic melt.
inclusioni 2
 
What are the fields of application for MI?
The droplets of magma that become entrapped in the crystals, which are formed during cooling, can provide information for petrogenic, magmatic, volcanic and hydrothermal study.  Recently, thanks to next-generation analytical techniques (such as SIMS, LA-ICPMS) which allow the determination of trace elements, stable and radiogenic isotopes with only an infinitely small amount of material, the study of MI has undergone remarkable progress.  Since MI do not degas during eruption and represent a closed system, they can be used in volcanic research as a valid instrument for the determination of the concentration of the volatile elements in the pre-eruptive conditions in the magma. The knowledge of the concentration of H2O, CO2, Cl, F and S, holds primary importance for the understanding of magma dynamics, the mechanisms of explosive eruption, the emission of gas from active volcanoes and for the role of magmas in the formation of the hydrothermal ore deposits.
Prof. De Vivo was one of the first Italian scholars to work on this research theme. In 1978, Prof. De Vivo set up a laboratory for the study of FI and MI (http://www.fluidenv.unina.it), and formed this research group promoting collaboration with researchers of the institutions listed above.
Since 1978, the group has published the results of numerous research projects regarding the study of FI and MI in the fields of volcanology, petrology, geothermal and ore deposits.
The application of the study of FI and MI to volcanologyhas concerned: the volcanic system of Somma-Vesuvio, the Hawaiian Islands, the Hyblaean Mountains, the Aeolian Islands, Pantelleria and the Pontine Islands.
The application of FI and MI to the study of geothermal fieldswere conducted: on the geothermal fields of Larderello-Travale, the Phlegrean Fields, in the Sabitini volcanoes, at Vulcano, at the Alban Hills and in the geothermal area of Sengan, Japan.
The application of FI to the study of mineral depositshas concerned: the barite deposits of Fiumarella (Catanzaro), fluorite mineralization of Sarrabus, Sardinia, sulphur mineral deposits of Maremma Toscana, fluorite mineral deposits of Camissinone, Val Brembana, Bergamasque Alps, the mines of Masua, fluorite mineralization of NW Sicily, mineralization related to granitoids of the Calabro-Peloritani Arc associated with geochemical-petrographic studies, in particular, of the granitoids of the Sila and Serre regions in Calabria.
 
 
 
In this figure, a complex fluid inclusion in a crystal of clinopyroxene found in a xenolith nodule from the island of Ventotene. From an article in Elements (January 2005) written by De Vivo B., Lima A. and Webster J.D.
 
Collaborators:
  • Prof. M. L. Frezzotti, Università di Milano Bicocca, Italia.
  • Prof. A. Peccerillo, Università di Perugia, Italia.
  • Dr H. E. Belkin, Dr R. A. Ayuso, Dr I. M. Chou, Dr N. Foley, U. S. Geological Survey, Reston, VA, USA.
  • Prof. R. A. Bodnar, Prof. R. Tracy, Prof. E. Gazel, Dr L. Fedele, Virginia Polytechnic Institute & State University (Virginia Tech), Blacksburg, VA, USA.
  • Prof. F. J. Spera, University of California at Santa Barbara, Santa Barbara, CA, USA.
  • Prof. W. A. Bohrson, North Western University, Ellensburg, WA, USA.
  • Prof. L. V. Danyushevsky, Prof. D. Kamenetsky, University of Tasmania, Hobart, Australia.
  • Dr J. D. Webster, American Museum Natural History at NewYork, USA.
  • Prof. C. Szabo, Dr K. Torok, Eotvos University, Budapest, Ungheria.
  • Prof. W. Lu, University of Geosciences at Wuhan, Cina
  • Prof. P. Ni, University of Nanjing, Cina
 
Selected scientific publications on this research theme: :
  • KLEBESZ R., ESPOSITO R., DE VIVO B. and BODNAR R. J., 2015. Further constraints on the origin of nodules from the Sarno (Pomici di Base) eruption of Mt. Somma-Vesuvius (Italy) based on reheated silicate-melt inclusions and clinopyroxene composition. Amer. Mineral., 100, http://dx.doi.org/10.2138/am-2015-4958
  • WEBSTER J. D., GOLDOFF B., SINTONI M. F., SHIMIZU N. and DE VIVO B., 2014. C-O-H-S-Cl-F volatile solubilities, partitioning, and mixing properties in phonolitic-trachytic melts and aqueous-carbonic vapor ± saline liquid at 200 MPa. J. Petrol., 55 (11), 2217-2248. Doi: 10.1093/petrology/egu055.
  • De Vivo B. and Rolandi G., 2013. Vesuvius: volcanic hazard and Civil Defense. Rend. Fis. Acc. Lincei, 24, 39-45. Doi: 10.1007/s12210-012-0212-2.
  • DOHERTY A. L., BODNAR R. J., DE VIVO B., BOHRSON W. A., BELKIN H. E., MESSINA A. and TRACY R. J., 2012. Bulk rock composition and geochemistry of olivine-hosted melt inclusions in the Grey Porri Tuff and selected lavas of the Monte Porri volcano, Salina, Aeolian Islands, southern Italy. Centr. Eur. J. Geosciences, 4(2), 338-355. Doi: 10.2478/s 13533-011-0066-7.
  • KLÉBESZ R., BODNAR R. J., DE VIVO B., TÖRÖK, K., LIMA A. and PETROSINO, P., 2012. Composition and origin of nodules from the ~ 20 ka Pomici di Base (PB)-Sarno eruption of Mt. Somma - Vesuvius, Italy. Centr. Eur. J. Geosciences, 4(2), 324-337. Doi: 10.2478/s13633-011-0059-6.
  • ESPOSITO R., BODNAR R. J, DANYUSHEVSKY L. V., DE VIVO B., FEDELE L.,HUNTER J., LIMA A. AND  SHIMIZU. N., 2011. Volatiles evolution of magma associated with the Solchiaro eruption in the Phlegrean Volcanic District (Italy). J. Petrol., 52 (12), 2431-2460. Doi: 10.1093/petrology/egr051.
  • LIMA A., DE VIVO B., SPERA F. J., BODNAR R. J., MILIA A., NUNZIATA C., BELKIN H. E. and CANNATELLI C., 2009. Thermodynamic model for the uplift and deflation episodes (bradyseism) associated with magmatic-hydrothermal activity at the Campi Flegrei active volcanic center (Italy). Earth Science Review, 97, 44-58. Doi: 10.1016/j.earscirev.2009.10.001.
  • WEBSTER J. D., SINTONI M. F. and DE VIVO B., 2009. The partitioning behavior of Cl, S, and H2O in aqueous vapor- ± hypersaline-liquid saturated phonolitic and trachytic melts at 200 Mpa. Chemical Geology, 263, 19-36. Doi:10.1016/j.chemgeo.2008.10.017.
  • BODNAR R. J., CANNATELLI C., DE VIVO B., LIMA A., BELKIN H. E. and MILIA A., 2007 Quantitative model for magma degassing and ground deformation (bradeyseism) at Campi Flegrei, Italy: implications for future eruptions. GEOLOGY,35(9): 791-794. Doi: 10.1130/G23653A.1.
  • FOWLER S. J., SPERA F. J., BOHRSON W. A., BELKIN H. E. and DE VIVO B., 2007. Phase equilibria constraints on the chemical and physical evolution of the Campania Ignimbrite. Journal of Petrology, 48 (3): 459-493. Doi: 10.1093/petrology/eg1068.
  • CANNATELLI C., LIMA A., BODNAR R. J.DE VIVO B., WEBSTER J. D. and  FEDELE L., 2007. Geochemistry of melt inclusions from the Fondo Riccio and Monopoli 1 eruptions at Campi Flegrei (Italy). Chemical Geology, 237: 418-432. Doi: 10.1016/j.chemgeo.2006.07.012.
  • LIMA A., DE VIVO B., FEDELE L., SINTONI M. F. and MILIA A., 2007. Geochemical variations between the 79 AD and 1944 AD Somma-Vesuvius volcanic products: constraints on the evolution of the hydrothermal system based on fluid and melt inclusions. Chemical Geology, 237: 401-417. Doi: 10.1016/j.chemgeo.2006.07.011.
  • MORGAN D. J., BLAKE S., ROGERS N.W., DE VIVO B., ROLANDI G. and DAVIDSON J.  P., 2006. Magma chamber recharge at Vesuvius in the century prior to the eruption of A.D. 79. Geology, 34 (10): 845-848.
  • DE VIVO B. and LIMA A., 2006. A hydrothermal model for ground movements (bradyseism) at Campi Flegrei, Italy. In: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo B., Edt). Developments in Volcanology 9, Elsevier, p. 289-317.
  • BOHRSON W. A., SPERA F. J., FOWLER S. J., BELKIN H. E., DE VIVO B. and ROLANDI G., 2006. Petrogenesis of the Campanian Ignimbrite: Implications for Crystal-Melt Separation and Open-System Processes from Major and Trace Elements and Th Isotopic Data. In: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo B., Edt). Developments in Volcanology 9, Elsevier, p. 249-288.
  • LIMA A., DE VIVO B., FEDELE L. and SINTONI M. F., 2006. Influence of hydrothermal processes on geochemical variations between 79 AD and 1944 AD Vesuvius eruptions. In: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo B., Edt). Developments in Volcanology 9, Elsevier, p. 235-247.
  • WEBSTER J. D., SINTONI M. F. and DE VIVO B., 2006. The role of sulfur in promoting magmatic degassing and volcanic eruption at Mt. Somma-Vesuvius. In: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo B., Edt). Developments in Volcanology 9, Elsevier, p. 219-233.
  • PIOCHI M., DE VIVO B. and AYUSO R. A., 2006.The magma feeding system of Somma-Vesuvius (Italy) strato-volcano: new inferences from a review of geochemical and Sr, Nd, Pb and O isotope data.  In: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo B., Edt). Developments in Volcanology 9, Elsevier, p. 181-202.
  • FEDELE L.,TARZIA M., BELKIN H. E., DE VIVOB., LIMAA. and LOWENSTERN J. B., 2006. Magmatic-hydrothermal fluid interaction and mineralization in alkali‑syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy. In: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo B., Edt). Developments in Volcanology 9, Elsevier., p. 125-161.
  • DE VIVO B., 2006. Preface to Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites. In: Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites (De Vivo B., Edt). Developments in Volcanology 9, Elsevier, p. vii-xii.
  • DE VIVO B., LIMA A., KAMENETSKY V.S. and DANYUSHEVSKY L. V., 2006. Fluid and melt inclusions in the sub-volcanic environments from volcanic systems: examples from the Neapolitan area and Pontine islands (Italy). In: Melt inclusions in plutonic rocks (Webster J. D., Edt), Mineralogical Association of Canada Short Course 36, Montreal, Quebec, 211 - 237. ISBN: 0-921294-36-0.
  • PIOCHI M., AYUSO R. A., DE VIVO B. and SOMMA R., 2006. Crustal contamination and crystal entrapment during polybaric magma evolution at Mt. Somma-Vesuvius volcano, Italy: geochemical and Sr isotope evidence. Lithos, 86: 303-329. doi:10.1016/j.lithos.2005.05.009.
  • DE VIVO B., LIMA A. and WEBSTER J. D., 2005. Volatiles in magmatic-volcanic systems. Elements, 1: 19-24. http://www.elementsmagazine.org/elementsonline.htm
  • MORGAN D. J., BLAKE S., ROGERS N. W., DE VIVO B., ROLANDI G., MACDONALD R. and HAWKESWORTH C. J., 2004. Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planetary Science Letters, 222: 933-943.