Info utili

Research Topics in

 

Exploration geophysics: development of tomographic and imaging methods for the 3D modelling of geophysical data

 
Responsible: Maurizio Fedi
 
Group: Giovanni Florio, Valeria Paoletti,  Mahmoud Abbas, Maurizio Milano, Andrea Vitale, Davide Lo Re, Ivano Pierri, Jamaledin Baniamerian, Federico Cella, Yemane Equbamariam, Ramin Varfinezhad, Saeed Parnow
 
This research is based on the need of interpreting large geophysical datasets in short time, which is a key issue for oil industry. This is made possible thanks to automatic or semi-automatic algorithms and/or by employing both 3D inversion algorithms and fast imaging methods. We started dealing with field in the 90s, and we are currently continuing this research actively with the aim of retrieving the underground distribution of source parameters such as density, magnetic susceptibility and electrical resistivity. Our group developed new algorithms and software regarding all research themes listed below, also in the frame of collaborations with industry (ENI) and other Universities (such as DTU, Denmark).
 
Development of original interpretation tools and software:
  • Imaging of potential fields: migration, DEXP and correlation algorithms (Fig. 1);
  • Continuous and discrete wavelet transform; multi-resolution analysis applied to the local residuation of potential fields; 
  • Multidimensional spectral analysis;
  • Multiscale methods (Fig. 2)for automatic estimation of parameters of potential field,deformation field and low-frequency EM sources;
  • Edge analysis of geophysical data;
  • Fractal and multi-fractal analysis of geophysical data;
  • Large-scale methods of 3D linear and non-linear (constrained) inversion of gravity, magnetic and resistivity data, such as: Inhomogeneous Depth-weighting Inversion, Self-constrained Inversion and Focusing, joint inversion of geophysical data, tools (Depth Resolution Plot) for monitoring the retrievable depth-resolution in potential-field interpretation.
  • Imaging of CSEM data;
  • Inversion of AEM time-domain data.

 
 


Fig. 1. Analisi di profondità su diapiri nel bacino di Nordkapp tramite il metodo DEXP (Fedi, 2007; Fedi & Pilkington, 2012) applicato a dati magnetici (da Fedi, Florio & Paoletti, 2014).  
 
  • Imagingdi dati di campi di potenziale: algoritmi di migrazione, DEXP, correlazione;
  • Sviluppo di metodi large-scale per l’inversione 3D lineare e non lineare (vincolata) di campi magnetici e gravimetrici: Inversione con depth-weighting per campi di potenziale non omogenei, Inversione Auto-vincolata, Focusing;
  • Sviluppo di metodi di analisi (Depth Resolution Plot) per il monitoraggio della risoluzione in profondità nell’interpretazione dei campi di potenziale (Figura 2);
  • Inversione parametrica multi-scala di campi di potenziale, per la stima di parametri di sorgente (profondità, forma e altri);
  • Imagingdi dati CSEM;
  • Inversione di dati AEM time-domain.
Fig. 2. Comparison between the magnetic data interpretation by the multiridge method (Fedi et al., 2009) and the geological model of a seismic profile taken from Hrubcová et al. (2005). The depth to magnetic sources estimated by the magnetic interpretation in the upper, middle, and lower crust are retrieved by the white, blue, and red ridges, respectively (from Milano et al., 2016).

Projects
SCIENTIFIC RESEARCH PROJECT ON:EXPLORING FOR HYDROCARBONS WITH GRAVITY AND MAGNETIC METHODS IN OFFSHORE EGYPT, between DISTAR and Edison International S.p.A., 2017-2018.
 
National Collaborations:
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Section of Catania
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Section of Rome
- Università degli Studi della Calabria (UNICAL), Cosenza
- Università del Salento, Lecce
- C.N.R., IREA- Istituto per il Rilevamento Elettronico dell'Ambiente, Naples
- ENI, San Donato Milanese, Milan
 
International Collaborations:
- Comenius University in Bratislava, Slovakia
 -University of the Witwatersrand, Johannesburg, South Africa
- South Valley University, Qena, Egypt
- Danish Technical University (DTU), Lyngby, Denmark
- Geological Survey of Canada (GSC), Ottawa
- University of Tehran, Iran
- Getech, Leeds, UK
- National Geophysical Research Institute (NGRI), Hyderabad, India
- Aarhus University, Denmark
 
 
Selected Publications:
Fedi M., Cella F., D’Antonio M., Florio G., Paoletti V., Morra V., 2018: Gravity modeling finds a large magma body in the deep crust below the Gulf of Naples, Italy, Scientific Reports, 8:8229. http://dx.doi.org/10.1038/s41598-018-26346-z.
 
Florio G., Fedi M., 2018: Depth estimation from downward continuation: An entropy-based approach to normalized full gradient. GEOPHYSICS, 83(3), J33-J42. http://doi.org/10.1190/geo2016-0681.1
 
Vitale A., Di Massa D., Fedi M., Florio G., 2018: A method for inversion of 1D vertical soundings of gravity anomalies. GEOPHYSICS, 83(2), G15–G23. http://doi.org/10.1190/GEO2017-0186.1
 
Florio G., Lo Re D., 2018: Terracing of potential fields by clustering methods. GEOPHYSICS, http://doi.org/10.1190/geo2017-0140.1
 
Baniamerian J., Oskooi B., Fedi M., 2017: Source imaging of potential fields through a matrix space-domain algorithm, JOURNAL OF APPLIED GEOPHYSICS, 136, 51–60. http://dx.doi.org/10.1016/j.jappgeo.2016.10.035
 
Fedi M., 2016: Scaling Laws in Geophysics: Application to Potential Fields of Methods Based on the Laws of Self-similarity and Homogeneity. Fractal Solutions for Understanding Complex Systems in Earth Sciences, Dimri V.P. Ed., USA, pp. 1-18.https://doi.org/10.1007/978-3-319-24675-8_1
 
Milano M., Fedi M., Fairhead J.D., 2016: The deep crust beneath the Trans-European Suture Zone from a multiscale magnetic model. Journal of Geophysical Research – Solid Earth, 121(9), 6276–6292. http://dx.doi.org/10.1002/2016JB012955
 
LO RE D., FLORIO G., FERRANTI L., IALONGO S., CASTIELLO G., 2016: Self-constrained inversion of microgravity data along a segment of the Irpinia fault, Journal of Applied Geophysics, 124, 148–154 http://dx.doi.org/10.1016/j.jappgeo.2015.12.002
 
DI MASSA D., FLORIO G., VIEZZOLI A., 2016: Adaptive sampling of AEM transients, Journal of Applied Geophysics, 125,45-55, http://dx.doi.org/10.1016/j.jappgeo.2016.01.002
 
Vitale A., Fedi M., Di Massa D., Florio G., 2016: A New Algorithm for Inversion of 1D Vertical Soundings of Potential Field Anomalies. 78th EAGE Conference and Exhibition, Vienna. http://dx.doi.org/10.3997/2214-4609.201601300
 
Paoletti V., Fedi M., Italiano F., Florio G., Ialongo S., 2016: Inversion of Gravity Gradient Tensor Data: does it provide better RESOLUTION? Geophysical Journal International, 205, 192–202, http://dx.doi.org/10.1093/gji/ggw003
 
Baniamerian, J., Fedi, M., Oskooi, B., 2016: Compact Depth from Extreme Points: a tool for fast potential field imaging. Geophys. Prosp., 64(5), 1386–1398.http://dx.doi.org/10.1111/1365-2478.12365
 
Paoletti V., Abbas M.A., Fedi M., 2016: Non-linear effects of the gravity field tensor invariants, Workshop "Potential Fields and their Gradient Tensors in the Integrated Inversion of Geophysical Data", 78th EAGE Conference & Exhibition 2016, Vienna, Austria, 3 Giugno 2016.
 
Fedi M., Florio G., Paoletti V., 2015: MHODE: a local-homogeneity theory for improved source-parameter estimation of potential fields. Geophysical Journal International, 202, 887-900, http://dx.doi.org/10.1093/gji/ggv185
 
FEDI M., FLORIO G., 2015: Depth estimation from downward continuation: an entropy-based approach. SEG Technical Program Expanded Abstracts 2015, 1495-1499. http://dx.doi.org/10.1190/segam2015-5918632.1
 
Paoletti V., Fedi M., Italiano F., 2015: Joint inversion of Gravity Gradient Tensor at Vredefort impact crater, We 21 C08, 21st European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience 2015, Torino, 6–10 Settembre, 2015, p. 1–4. http://dx.doi.org/10.3997/2214-4609.201413798
 
Paoletti V., Hansen P.C., Hansen M.F., Fedi M., 2014: A tool for analysing depth resolution in potential-field inversion: application to the Neapolitan Volcanic Area. 76th EAGE Conference & Exhibition 2014, Amsterdam, Olanda, 15–19 Giugno 2014, p. 1–4. http://dx.doi.org/10.3997/2214-4609.20140896
 
Abbas M.A., Fedi M., Florio G., 2014. Improving the local wavenumber method by automatic DEXP transformation. Journal of Applied Geophysics 111, 250–255. http://dx.doi.org/10.1016/j.jappgeo.2014.10.004
 
Abbas M.A., Fedi M., 2014. Automatic DEXP imaging of potential fields independent of the structural index. GEOPHYSICAL JOURNAL INTERNATIONAL, vol. 199, p. 1625-1632, ISSN: 0956-540X, http://dx.doi.org/10.1093/gji/ggu354
 
CASTALDO, R., FEDI, M., FLORIO, G., 2014. MULTISCALE ESTIMATION OF EXCESS MASS FROM GRAVITY DATA. GEOPHYSICAL JOURNAL INTERNATIONAL, 197 (3), 1387–1398. http://dx.doi.org/10.1093/GJI/GGU082
 
Fedi M., Florio G., Paoletti V., 2014. Multiscale analysis of potential fields: reconstruction of magnetized complex basements. 2nd iMAGINE - integration of Magnetics And Gravity In Northern Exploration, Tromsø, Norvegia 2-6 Giugno 2014, No 2, pp. 25-26.
 
Florio G., Fedi M., Pasteka R., 2014. On the estimation of the structural index from low-pass filtered magnetic data Geophysics, V. 79, NO. 6; P. J67-J80, http://dx.doi.org/10.1190/GEO2013-0421.1
 
FLORIO G., FEDI M., 2014. MULTIRIDGE EULER DECONVOLUTION. GEOPHYSICAL PROSPECTING, 62, N. 2, 333–351, http://dx.doi.org/10.1111/1365-2478.12078
 
Ialongo S., Fedi M., Florio G., 2014. Invariant models in the inversion of gravity and magnetic fields and their derivatives. Journal of Applied Geophysics, 110, 51-62,  http://dx.doi.org/10.1016/j.jappgeo.2014.07.023
 
Mastellone D., Fedi M., Ialongo S., Paoletti V., 2014. Volume upward continuation of potential fields from the minimum-length solution: an optimal tool for continuation through general surfaces. Journal of Applied Geophysics, 111, 346–355, http://dx.doi.org/10.1016/j.jappgeo.2014.10.020
 
PAOLETTI V., HANSEN P.C., HANSEN M.F., FEDI M., 2014. A COMPUTATIONALLY EFFICIENT TOOL FOR ASSESSING THE DEPTH RESOLUTION IN POTENTIAL-FIELD INVERSION. GEOPHYSICS, 79:4, A33–A38. http://dx.doi.org/10.1190/GEO2014-0017.1
 
FEDI M., ABBAS M.A., 2013. A FAST INTERPRETATION OF SELF-POTENTIAL DATA USING THE DEPTH FROMEXTREME POINTS METHOD. GEOPHYSICS, 78(2), E107–E116. http://dx.doi.org/10.1190/GEO2012-0074.1
 
FEDI M., FLORIO G., 2013. DETERMINATION OF THE MAXIMUM-DEPTH TO POTENTIAL FIELD SOURCES BY A MAXIMUM STRUCTURAL INDEX METHOD. JOURNAL OF APPLIED GEOPHYSICS, 88, 154–160. http://dx.doi.org/10.1016/J.JAPPGEO.2012.10.009
 
PAOLETTI V., IALONGO S., FLORIO G., FEDI M., CELLA F., 2013. SELF-CONSTRAINED INVERSION OF POTENTIAL FIELDS, GEOPHYSICAL JOURNAL INTERNATIONAL, 195(2), 854–869. http://dx.doi.org/10.1093/GJI/GGT313
 
FEDI M., FLORIO G., CASCONE L., 2012. MULTISCALE ANALYSIS OF POTENTIAL FIELDS BY A RIDGE CONSISTENCY CRITERION: THE RECONSTRUCTION OF THE BISHOP BASEMENT, GEOPHYSICAL JOURNAL INTERNATIONAL, 188(1), 103-114, http://dx.doi.org/10.1111/J.1365-246X.2011.05259.X
 
FEDI M., PILKINGTON M., 2012. UNDERSTANDING IMAGING METHODS FOR POTENTIAL FIELD DATA. GEOPHYSICS 77(1), G13–G24. https://doi.org/10.1190/geo2011-0078.1
 
FEDI M., CASCONE L., 2011. COMPOSITE CONTINUOUS WAVELET TRANSFORM OF POTENTIAL FIELDS WITH DIFFERENT CHOICES OF ANALYZING WAVELETS. JOURNAL OF GEOPHYSICAL RESEARCH, 116(B7). http://dx.doi.org/10.1029/2010JB007882
 
FEDI M., FLORIO G., 2011. NORMALIZED DOWNWARD CONTINUATION OF POTENTIAL FIELDS WITHIN THE QUASI-HARMONIC REGION. GEOPHYSICAL PROSPECTING, 59(6), 1087-1100. http://dx.doi.org/10.1111/j.1365-2478.2011.01002.x
 
FEDI M., CELLA F., QUARTA T., VILLANI A., 2010. 2D CONTINUOUS WAVELET TRANSFORM OF POTENTIAL FIELDS DUE TO EXTENDED SOURCE DISTRIBUTIONS. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 28(3), 320–337. https://doi.org/10.1016/j.acha.2010.03.002
 
CELLA F., FEDI M., FLORIO G., 2009. TOWARD A FULL MULTISCALE APPROACH TO INTERPRET POTENTIAL FIELDS. GEOPHYSICAL PROSPECTING, 57, 543-557. http://dx.doi.org/10.1111/j.1365-2478.2009.00808.x
 
FEDI M., FLORIO G., QUARTA T., 2009. MULTIRIDGE ANALYSIS OF POTENTIAL FIELDS: GEOMETRICAL METHOD AND REDUCED EULER DECONVOLUTION. GEOPHYSICS, 74(4), L53-L65
 
FLORIO G., FEDI M., RAPOLLA A., 2009. INTERPRETATION OF REGIONAL AEROMAGNETIC DATA BY THE SCALING FUNCTION METHOD: THE CASE OF SOUTHERN APENNINES (ITALY). GEOPHYSICAL PROSPECTING, 57, 479–489. http://dx.doi.org/10.1111/j.1365-2478.2009.00807.x